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Abstract—Recent advances in deep reinforcement learning
offer an opportunity to revisit complex traffic control problems
at the level of vehicle dynamics, with the aim of learning locally
optimal (with respect to the policy parameterization) policies
for a variety of objectives such as matching a target velocity
or minimizing fuel consumption. In this article, we present a
framework called CISTAR (Customized Interface for SUMO,
TraCI, and RLLab) that integrates the widely used traffic simu-
lator SUMO with a standard deep reinforcement learning library
RLLab. We create an interface allowing for easy customization
of SUMO, allowing users to easily implement new controllers,
heterogeneous experiments, and RL cost functions that depend on
arbitrary state variables. We demonstrate the usage of CISTAR
with several benchmark control and RL examples.

Index Terms—Simulation; deep reinforcement learning; con-
trol; vehicle dynamics

I. INTRODUCTION

Modeling and analysis of traffic dynamics is notoriously
complex and yet is a prerequisite for model-based traffic
control [1], [2]. Researchers classically trade away the com-
plexity of the model (and thus the realism of the model)
in favor of the tractability of analysis, often with the goal
of designing optimal controllers or other controllers with
desirable properties, such as safety or comfort [3], [4], [5], [6].
Consequently, results in traffic control can largely be classified
as simulation-based numerical analysis (for example, [7], [8],
[9], [10]) or theoretical analysis on simple settings such as
assuming non-oscillatory responses (e.g. [11]) or focusing on
a single-lane ring road (e.g. [12], [13], [14], [15], [16], [17]).
In the present article, we largely focus our discussion on
microscopic longitudinal dynamics, also called car following
models [18], but our proposed framework largely extends to
other dynamics such as lateral dynamics [19] and coordinated
behaviors [20].

Deep reinforcement learning (RL) is a powerful tool for
control and has already had demonstrated success in complex
but data-rich problem settings such as Atari games [21], 3D
locomotion and manipulation [22], [23], [24], chess [25],
among others. RL testbeds exist for different problem domains,
such as the Arcade Learning Environment (ALE) for Atari
games [26], DeepMind Lab for a first-person 3D game [27],
OpenAI gym for a variety of control problems [28], FAIR
TorchCraft for Starcraft: Brood War [29], MuJoCo for multi-

joint dynamics with Contact [30], TORCS for a car racing
game [31], among others. DeepMind and Blizzard will col-
laborate to release the Starcraft II AI research environment
[32]. Each of these RL testbeds enables the study of control
through RL of a specific problem domain by taking advantage
of the data-rich setting of simulation. One of the primary goals
of this article is to present a similarly suitable RL testbed for
traffic dynamics by making use of an existing traffic simulator.

The main contributions of this article are as follows:
• We introduce the Customized Interface for SUMO,

TraCI, and RLLab (CISTAR) library, a framework for
reinforcement learning and control experiments for traffic
microsimulation.

• CISTAR integrates the traffic simulator SUMO with a
standard deep reinforcement learning library RLLab.

• CISTAR extends SUMO to support high frequency sim-
ulation and more flexibility in controllers.

• Using CISTAR, we replicate and demonstrate new control
experiments for single- and multi-lane circular roads,
including homogeneous and non-homogeneous vehicle
types.

• Using CISTAR, we demonstrate the first deep reinforce-
ment learning experiments on traffic at the level of multi-
agent vehicle control.

II. RELATED WORK

A. Deep learning and traffic

Several recent studies incorporated ideas from deep learning
in traffic optimization. Deep learning has been used for traffic
prediction [33], [34] and control [35]. A deep learning archi-
tecture was used in [34] to predict traffic flows, demonstrating
success even during highly nonlinear special events; to learn
features to represent states involving both space and time, [33]
additionally used hierarchical autoencoding in the traffic flow
prediction problem. A multi-agent deep reinforcement learning
algorithm was introduced in [35] to learn a policy for ramp
metering. For additional uses of deep learning in traffic, we
refer the reader to [36], which presents an overview com-
paring non-neural statistical methods versus neural networks
in transportation research. These recent results demonstrate
that deep learning and deep reinforcement learning are a



promising approach to traffic problems. Our work aims to
further this by providing a framework for traffic experiments
using reinforcement learning for control.

B. Traffic simulators

Traffic microsimulators include Quadstone Paramics [37],
VISSIM [38], [39], AIMSUN [40], MATSIM [41], and SUMO
[42]. The first three are commercial, whereas the latter two
are open source software. Each of these tools are capable of
large-scale traffic microsimulation and can handle a variety of
policies and control strategies. Each tool offers an Application
Programming Interface (API) which permits overriding or
extending the default models such as car following, lane
changing, route choice, etc. Each of these simulators are
widely used in the research community. These tools differ in
their precise offerings and features, such as visualization tools,
supported models, and simulation speed. Because most studies
focus their study on a single simulator, a comprehensive
comparison of these tools is unfortunately lacking.

In our work, we choose to integrate SUMO, an open-source,
extensible, microscopic simulator that can simulate large road
networks. SUMO discretizes time and progresses the simula-
tion for a user-specified timestep; furthermore, because SUMO
is microscopic, individual vehicles are controlled by car fol-
lowing models—functions of the vehicle’s headway, velocity
and the velocity of the preceding vehicle. The acceleration
provided by the car following model is applied as a change
of velocity over the course of the next timestep. SUMO’s car
following models include IDM, IDMM, and Wiedermann.

Because the results of an RL experiment rely on the
realism of the model/simulator, we need the traffic models
to capture more realistic fine-grained dynamics, including
operating at a higher granularity (smaller simulation step),
with a different model of time delays, with acceleration-
based control, etc. SUMO, in particular, has several current
issues which limit its suitability for RL. Firstly, all built-in car
following models are configured with a minimal time headway,
τ , that is used to ensure safety [43], and do not support
time delays. Secondly, SUMO’s car following models are
calibrated for a simulation timestep of 1.0 seconds, and their
behavior for smaller timesteps is known to produce unnatural
behaviors, [44] whereas we would like to simulate at 10-
100ms timesteps. Finally, there does not yet exist an interface
between SUMO and reinforcement learning libraries.

Our work aims to address each of these limitations. CISTAR
extends SUMO to permit rich custom controllers which may
operate at smaller simulation steps, with time delays, and
be acceleration-based controllers. These richer control actions
allow SUMO to support a larger class of controllers, thus
permitting a more realistic and suitable testbed for reinforce-
ment learning. SUMO also includes a Python API called TraCI
(TRAffic Control Interface), from which the user can retrieve
information about the vehicles’ current states and issue precise
commands to set the vehicles’ velocities, positions, lanes.
Using this interface, we can interface SUMO with RL libraries,

read out state information, issue actions, define our own car
following models, etc.

III. PRELIMINARIES

In this section, we describe two well-studied topics, which
are key to understanding CISTAR: longitudinal dynamics [12]
and Markov decision processes [45]. Longitudinal dynamics
describe the forwards-backwards control of vehicle control
models. Markov decision processes is the problem framework
under which reinforcement learning optimizes policies.

A. Longitudinal dynamics

Longitudinal dynamics are usually defined by car following
models [12]. Standard car following models (CFMs) are of the
form:

ai = v̇i = f(hi, ḣi, vi), (1)

where the acceleration ai of vehicle i is some typically nonlin-
ear function of hi, ḣi, vi, which are respectively the headway,
relative velocity, and velocity for vehicle i. A general model
may include time delays from the input signals hi, ḣi, vi to
the resulting ouput acceleration ai. Example CFMs include the
Intelligent Driver Model (IDM) [46] and the Optimal Velocity
Model (OVM) [47], [48]. Our presented system implements
several known CFMs and provides an easy way to implement
custom CFMs.

B. Markov decision processes and reinforcement learning

Reinforcement learning problems are typically studied in the
framework of Markov decision processes (MDPs) [45], [49].
A MDP is defined by the tuple (S,A, P, r, ρ0, γ, T ), where
S is a (possibly infinite) set of states, A is a set of actions,
P : S×A×S → R≥0 is the transition probability distribution,
r : S × A → R is the reward function, ρ0 : S → R≥0 is the
initial state distribution, γ ∈ (0, 1] is the discount factor, and
T is the horizon.

Reinforcement learning addresses the problem of how
agents should learn to take actions to maximize cumulative
reward through interactions with the environment. We use
a class of reinforcement learning algorithms called policy
gradient methods [50], which optimize a stochastic policy
πθ : S×A → R≥0. OpenAI’s RLLab is an open source frame-
work that facilitates running and evaluating reinforcement
learning algorithms on a variety of different scenarios, from
classic tasks such as cartpole balancing to more complicated
tasks such as 3D humanoid locomotion [51]. To perform an
experiment with RLLab, we must first define an environment
encapsulating the MDP or problem setting, such as velocity
matching on a ring road.

In the next section, we introduce CISTAR, which defines
environments to capture various traffic problem settings and
uses RL libraries to achieve user-defined learning goals.



IV. OVERVIEW OF CISTAR

CISTAR encapsulates the use of SUMO with TraCI that
allows them to support the MDP required for a reinforcement
learning experiment in RLLab. After initializing the simulua-
tion with a number of vehicles in some initial configuration,
RLLab collects samples by stepping through the simulation
and then resets the simulation when the simulation is termi-
nated. In each step, the vehicles are provided actions through
a controller or through a learned policy. These actions are then
applied via TraCI and the simulation progresses. At the end of
an episode, RLLab issues a reset command to the environment,
which returns vehicles to their initial position.

CISTAR can be used to perform purely control theoretic
experiments, by only relying on existing controllers for ac-
tions; or it can be used for experiments with a mix of existing
and learned controllers, such as heterogeneous or mixed au-
tonomy experiments. Vehicles can have both a longitudinal
and a lateral controller, with longitudinal safety guaranteed by
supported fail-safe models (see Section V-A).

Fig. 1: CISTAR Process Diagram.

A. Architecture of CISTAR

Experiments are initialized and run using CISTAR by defin-
ing two components: a scenario and an environment.

The scenario for an experiment specifies network configu-
ration (i.e. shape and attributes, e.g. two-lane loop road with
circumference 200m). Based on the specifications provided,
the net and configuration files needed by SUMO are generated.
The user also specifies the number and types of vehicles (car

Fig. 2: CISTAR Architecture (See Section IV-A).

following model and a lane-change controller), which will be
placed in the scenario.

The generator is a predefined class, which allows for rapid
generation of scenarios with user-defined sizes, shapes, and
configurations. The experiments presented in this article use a
large loop road generated by specifying the number of lanes
and ring circumference.

The environment encodes the MDP, including functions
to step through the simulation, retrieve the state, sample and
apply actions, compute the reward, and reset the simulation.
The environment is updated at each timestep of the simulation
and, importantly, stores each vehicle’s state (e.g. position and
velocity). Information from the environment is provided to a
controller or passed to RLLab to determine an action for a
vehicle to apply, (e.g. an acceleration). Note that the amount
of information provided to either RL or to a controller can be
restricted as desired, thus allowing fully observable or partially
observable MDPs. The experiments presented in this article
are fully observed (full knowledge of all vehicle positions and
velocities).

When provided with actions to apply, CISTAR calls the
action applicator which uses TraCI to enact the action
on the vehicles. Because TraCI can only set velocities, not
accelerations, we convert the acceleration into an instantaneous
δv = α·dt, where α is the acceleration and dt is the simulation
time step-size.

V. FEATURES OF CISTAR

A. Fail-safes

CISTAR supplements its car following models with a variety
of safe driving rules that prevent the unstable car following
models from crashing. As SUMO experiments terminate when
a collision occurs, we built a fail-safe mechanism, which must
run constantly. Fail-safes are passed in the action commanded
by the vehicle controller, regardless of whether that is an
action specified by RL or one specified by a control model.
Fail-safes are a standard feature in any traffic simulator that
is required to handle large perturbations and string unstable
traffic. The conservativeness of the fail-safe affects the braking
behavior of the traffic. In general, fail-safes operate according



to the principle of maintaining a minimum safe distance from
the leading vehicle where the maximum acceleration and
deceleration of the leading vehicle is stochastically generated
[52], [53]. The current implementation of CISTAR does not
account for this second half and assumes that all vehicles are
equipped with the same deceleration.

1) Final Position Rule: For this fail-safe we aim to keep
a velocity such that if the preceding vehicle suddenly starts
braking with max deceleration a, then even if the following
vehicle has a delay τ it can still slow down such that it comes
to rest at the final position of the rear bumper of the preceding
vehicle. If the preceding vehicle is initially at position xi−1(0),
and decelerates maximally, it will come to rest at position
xi−1(0) +

v2i−1(0)

2a . Because we are calculating the maximum
velocity, if the second vehicle has delay τ , it will first travel
a distance of vsafeτ and then begins to brake with maximum
deceleration, which brings it to rest at position xi(0) + vsafe ·(
τ + vsafe

2a

)
.

B. Longitudinal controllers

CISTAR supports a variety of car following models, in-
cluding default models from SUMO and custom models not
provided by SUMO. Each model specifies the acceleration for
a vehicle at a given time, which is commanded to that vehicle
for the next time-step using TraCI. Controllers with arbitrary
time delays between perception and action are supported in
CISTAR. Delays are implemented by storing control actions
in a queue. For delayed controllers, a new action is computed
using the state at each timestep and enqueued, and an ac-
tion corresponding to some previous state is dequeued and
commanded. Descriptions of supported car-following models
follow below.

1) Second-order linear model: The first, and simplest, car
following model implemented is the forward-looking car fol-
lowing model specified in [12]. The model specifies the accel-
eration of vehicle i as a function of a vehicle’s current position
and velocity, as well as the position and velocity of the vehicle
ahead. Thus: v̇i = kd(di−ddes)+kv(vi−1−vi)+kc(vi−vdes)
where vi, xi are the velocity and position of the i-th vehicle,
di := xi−1− xi is the headway for the i-th vehicle, kd, kc, kv
are controller gains for the difference between the distance to
the leading car and the desired distance, relative velocity, and
the difference between current velocity and desired velocity,
respectively. ddes, vdes are desired headways and velocities
respectively.

2) Optimal Velocity Model (OVM): Another car following
model implemented in CISTAR is the optimal velocity model
from [14]. A variety of optimal velocity functions exist for
use in specifying car following models [54], [1]; [14] uses
a cosine-based function to define optimal velocity V (h) as a
function of headway. They define

V (h) =


0 h ≤ hst
vmax
2 (1− cos(π h−hst

hgo
− hst)) hst < h < hgo

vmax h ≥ hgo

The values hst, hgo correspond to headway thresholds for
choosing an optimal velocity, so that for headways below hst,
the optimal velocity is 0, and for headways above hgo, the
optimal velocity is some maximum velocity vmax. The optimal
velocity transitions using a cosine function for headways
between hst and hgo. V (h) is used in the control law for
the acceleration of the i-th vehicle, where v̇i = α[V (hi) −
vi]+β[vi−1−vi] at each timestep. This controller can also be
implemented with delay to simulate perception and reaction
times for human drivers, in which case v̇i(t) would be a
function of states hi(t− τ), vi(t− τ), vi−1(t− τ).

3) Bilateral control model (BCM): The bilateral controller
presented by [15], [16] considers not only the relation of a
subject vehicle to the vehicle ahead but also to the vehicle
behind it. In their controller, the subject vehicle’s acceleration
depends on the distance and velocity difference to both the
vehicle ahead and behind, with

v̇i = kdhi + kv((vi−1 − vi)− (vi − vi+1)) + kc(vi − vdes)

where hi := (xi−1 − xi)− (xi − xi+1).

C. Lateral controllers

SUMO comes with models dictating when and how to lane
change [55]; however, in order to provide a means to conduct
RL-based lane changing experiments, CISTAR introduces a
framework to easily design new lane changing models and
optimize them for small time-steps. The current implementa-
tion of CISTAR includes preliminary lane-changing models
in which vehicles change lanes stochastically, if adjacent
lanes satisfy a set of constraints. CISTAR vehicles do not
check to change lanes at each timestep, as that might lead
to an excessive number of lane changes. Instead, at some
time interval, the vehicle determines if it should lane change.
This rudimentary controller provides an initial scaffold for
supporting more sophisticated lane changing behavior, which
is the subject of ongoing work.

The initial lane-changing model iterates through each ad-
jacent lane, determining which lane offers the highest speed
and storing the speed of traffic for each lane in an array. It
begins by identifying the gap available in each lane for a
controlled vehicle to move into, by determining the distances
to the vehicles ahead and behind of where the subject vehicle
would be in that lane. If the gap in some lane is too small,
that lane’s available speed is set to 0 in the array. If the gap is
large enough, the model sets the lane’s speed in the array to
the average speed of all the vehicles some distance ahead and
behind of the controlled vehicle in that lane. Once all lanes
have been investigated, the lane with the maximum available
speed is identified using the array. If the subject vehicle is not
in the optimal lane, a lane-change maneuver to the optimal
lane is commanded using TraCI with some probability.

D. Heterogeneous settings

CISTAR supports traffic settings with heterogeneous vehicle
types. By initializing different “types” of vehicles, each with
its own controllers and parameters, vehicles with different



controllers be simulated simultaneously. Additionally, simu-
lations can contain both RL-controlled vehicles and control-
based vehicles. This permits the use of CISTAR for mixed
autonomy experiments.
E. Perturbations

Because of the fine-grained control over vehicles and their
motion, arbitrary perturbations can be specified in an experi-
ment. For example, the experiments defined below randomly
choose and perturb a vehicle by overriding its control inputs
and commanding a deceleration for some duration.
F. Markov decision processes (MDPs)

CISTAR supports a large range of traffic MDPs, including
custom reward functions, full and partially observed states, full
and partial controlability, noisy observations, etc. For instance,
the controller may observe only local information from only
the preceding vehicle, only nearby vehicles, or all vehicles.
The reward function can be any function of vehicle speed,
position, fuel consumption, acceleration, distance elapsed, etc.

VI. CISTAR USE CASES

This section details various example experiments using CIS-
TAR, demonstrating the capability of the system to simulate
homogeneous and mixed vehicle traffic in ring-road settings
from arbitrary initial conditions and including perturbations.

A. Experimental Scenario

In the well-known result of [56], Sugiyama demonstrates
in a physical experiment on a single-lane road of length
230m that 22 vehicles traveling at 8.3m/s produce backwards
propagating waves, causing part of the traffic to come to a
complete stop. Each experiment ran for 100 seconds. As a
demonstrative example, we aim to reproduce their experiment
in CISTAR. We additionally test various iterations of it,
observing the resulting behavior.

B. Control experiments

1) OVM from uniform flow (Figure 3): The first experiment
runs the Sugiyama setup from an initial state in which all
22 vehicles were spaced evenly around the ring road and
start with the same velocity (also called uniform flow). Each
of the vehicles was using a Optimal Vehicle Model (OVM)
controller, as described in the section on controllers above.
The experiment begins from a stopped state, gets up to speed,
and proceeds free of traffic shockwaves for its duration.

2) OVM from a nonuniform flow state (Figure 4): This
experiment simulates the Sugiyama setup but from a non-
uniform initial configuration. Starting with the first vehicle, the
subsequent position of each vehicle is drawn from a Gaussian
distribution with mean equal to the length of track divided
by number of vehicles and a standard deviation given by one
fifth the mean. The unstable starting state also incorporates
a bunching factor, in which no vehicles are placed on some
segment of the track, with the length of that segment being a
user-defined variable. All 22 vehicles use the OVM controller.
Instability is apparent from the beginning, with traffic rapidly
degrading into traffic shockwaves and failing to recover.

Fig. 3: OVM from uniform flow, showing an average speed of 4.87 m/s
across all vehicles.

Fig. 4: OVM from a nonuniform state, showing stop-and-go traffic with an
average speed of 7.8 m/s.

3) OVM with a perturbation (Figure 5): In this experiment,
22 OVM vehicles are run from a uniform, evenly-spaced
starting state. No traffic shockwaves form until the system is
perturbed 9 seconds into the experiment, once the vehicles
have roughly reached their equilibrium velocities from the
unperturbed scenario. One vehicle is randomly chosen and
an acceleration of −5 m/s2 is applied for 1.5 seconds. The
braking of that vehicle forces the vehicles behind it to slow
down as well, and the system degrades into stop-and-go traffic.

Fig. 5: OVM with a perturbation, breaking down from uniform
flow into stop-and-go traffic with an average speed of 7.5 m/s.

4) BCM with a perturbation (Figure 6): 22 vehicles imple-
menting the bilateral car following model (BCM), described in
the controllers section, are implemented in this simulation. The
simulation begins from a uniform, evenly-spaced starting state.
As with the experiment above, a random vehicle is perturbed



at an acceleration of −5m/s2, 9 seconds into the simulation
for 1.5 seconds. Some braking results, but unlike the OVM
case described above, the BCM vehicles recover from this
perturbation and traffic returns to uniform flow shortly after.

Fig. 6: BCM with a perturbation, showing an average speed
of 7.9 m/s.

5) BCM from an nonuniform state (Figure 7): Again, 22
BCM vehicles are run in this simulation, but from the same
nonuniform flow starting state as in the nonuniform flow OVM
case, in which vehicles are spaced randomly subject to a
bunching factor. There is some initial instability and small
traffic shockwaves, but again the BCM vehicles recover from
this non-stable state and return to uniform flow.

Fig. 7: BCM from a nonuniform state, showing an average
speed of 7.9 m/s.

6) Mixed BCM/OVM from a nonuniform flow state (Fig-
ure 8): Here, 11 BCM vehicles and 11 OVM vehicles be-
gin from a nonuniform flow, randomly spaced, and bunched
starting state as described above. The proportion of bilateral
control vehicles proves sufficient to prevent the stop-and-go
waves seen in the unstable OVM scenario. Some velocity vari-
ation persists, however, unlike the full-BCM unstable scenario
which returns to a completely uniform flow state.

7) Multi-lane experiment (Figure 9): A set of preliminary
multi-lane experiments implementing the rudimentary lane-
changing controller were also run, one of which is pictured
below. In the experiment, all vehicles were initialized in the
outer lane of a 200 meter two-lane road, and, as expected,
a set of vehicles set to higher speeds changed into the inner
lane, moving faster than cars in the inner lane.

Fig. 8: BCM/OVM, nonuniform state, showing an average
speed of 7.1 m/s.

Fig. 9: A sample multi-lane experiment

C. Reinforcement learning experiments

CISTAR permits configuring and running reinforcement
learning experiments on traffic problems through RLLab.
RLLab enables the easy tuning of the baseline, policy parame-
terization, and numerous hyperparameters such as path length
and batch size. In addition, CISTAR Scenarios allow easy
formulation of different MDPs for studying different traffic
problems, such as optimizing for different rewards like fuel
consumption or matching a target speed. The following sample
experiment use an RL algorithm called Trust Region Policy
Optimization (TRPO) [23] due to its high performance on a
number of reinforcement learning benchmarks [51], including
in a traffic application [35].

1) Sample Experiment: target velocity: In this sample ex-
periment, we demonstrate as a proof-of-concept a problem
which can also be solved using linear control. All vehicles
in the setup are controllable, and the goal is to control all
vehicles to drive at a target velocity, from a given initial
condition. The state of the MDP is represented by the current
velocity of all vehicles in the system, and the action is
represented by an instantaneous velocity that will be applied
in the following timestep. The reward signal is the mean-
squared error of the current velocity of all vehicles with the
target velocity. The policy is a Gaussian multi-layer perceptron
represented by a single-layer 16-neuron neural network, and
the hyperparameters were tuned accordingly. For a simple



setup of four vehicles, we observe in Figure 10 that the reward
signal converges to near zero in 600 iterations, indicating that
the vehicles successfully learn to drive at a target velocity. We
then tried a more congested track with 25 vehicles, but the
space limitations prevent the policy from learning efficiently,
as can be seen in Figure 11 and Figure 12. Training a
policy efficiently on a congested environment is the subject
of ongoing work.

Fig. 10: The convergence curve for the target velocity reinforcement learning
experiment indicates convergence to near-zero reward (indicating matched
target velocity) in 600 training iterations.

Fig. 11: Spacetime diagram for a very congested track. The learned policy
can barely move cars since they are so close.

Fig. 12: The discounted reward for a congested shows improvement in a
policy; however, the reward is still very far from 0.

VII. CONCLUSION

CISTAR is a tool that quickly and efficiently facilitates
simulating complex traffic settings built on widely-used open
source tools. Researchers can use it to exercise fine-grained
control over vehicles in simulation and test a variety of differ-
ent controllers against each other. RLLab integration enables
the creation of environments in which teams of autonomous
vehicles can learn and execute policies in various settings.

The specific use of CISTAR to achieve locally optimal
(with respect to the policy parameterization) behaviors for
teams of connected automated vehicles on a variety of traffic
“tasks” is the subject of our ongoing research, including on
ring roads, merges, intersections, etc. Additional ongoing work
includes further development of CISTAR features, including
more realistic lane-changing models, multi-lane safety, and
preparation for an open-source release of CISTAR. Other
future work include establishing a set of benchmark tasks
(similar in spirit to [51]) for a wide variety of traffic scenarios
and integration of CISTAR with OpenAI gym [28] for further
compatibility with reinforcement learning tools.
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[31] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and
A. Sumner, “Torcs, the open racing car simulator,” Software available
at http://torcs. sourceforge. net, 2000.

[32] O. Vinyals, “Deepmind and blizzard to release starcraft ii
as an ai research environment,” https://deepmind.com/blog/
deepmind-and-blizzard-release-starcraft-ii-ai-research-environment/,
2016.

[33] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow
prediction with big data: a deep learning approach,” IEEE Transactions
on Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, 2015.

[34] N. Polson and V. Sokolov, “Deep learning predictors for traffic flows,”
arXiv preprint arXiv:1604.04527, 2016.

[35] F. Belletti, D. Haziza, G. Gomes, and A. M. Bayen, “Expert level
control of ramp metering based on multi-task deep reinforcement

learning,” CoRR, vol. abs/1701.08832, 2017. [Online]. Available:
http://arxiv.org/abs/1701.08832

[36] M. G. Karlaftis and E. I. Vlahogianni, “Statistical methods versus
neural networks in transportation research: Differences, similarities and
some insights,” Transportation Research Part C: Emerging Technologies,
vol. 19, no. 3, pp. 387–399, 2011.

[37] G. D. Cameron and G. I. Duncan, “Paramicsparallel microscopic sim-
ulation of road traffic,” The Journal of Supercomputing, vol. 10, no. 1,
pp. 25–53, 1996.

[38] M. Fellendorf, “Vissim: A microscopic simulation tool to evaluate
actuated signal control including bus priority,” in 64th Institute of
Transportation Engineers Annual Meeting. Springer, 1994, pp. 1–9.

[39] M. Fellendorf and P. Vortisch, “Microscopic traffic flow simulator
vissim,” in Fundamentals of traffic simulation. Springer, 2010, pp.
63–93.

[40] J. Casas, J. L. Ferrer, D. Garcia, J. Perarnau, and A. Torday, “Traffic sim-
ulation with aimsun,” in Fundamentals of traffic simulation. Springer,
2010, pp. 173–232.

[41] K. N. Horni, A. and K. A. (eds.), The Multi-Agent Transport Simulation
MATSim. Ubiquity, London, 2016.

[42] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent
development and applications of sumo-simulation of urban mobility,”
International Journal On Advances in Systems and Measurements,
vol. 5, no. 3&4, 2012.

[43] (2016) Car-following-models. [Online]. Available: http://sumo.dlr.de/
wiki/Car-Following-Models#tau

[44] (2016) Simulation/basic definition. [Online]. Available: http://sumo.dlr.
de/wiki/Simulation/Basic Definition#Defining the Time Step Length

[45] R. Bellman, “A markovian decision process,” DTIC Document, Tech.
Rep., 1957.

[46] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical review E,
vol. 62, no. 2, p. 1805, 2000.

[47] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama,
“Structure stability of congestion in traffic dynamics,” Japan Journal of
Industrial and Applied Mathematics, vol. 11, no. 2, pp. 203–223, 1994.

[48] ——, “Dynamical model of traffic congestion and numerical simula-
tion,” Physical review E, vol. 51, no. 2, p. 1035, 1995.

[49] R. A. Howard, “Dynamic programming and markov processes,” 1960.
[50] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour et al., “Policy

gradient methods for reinforcement learning with function approxima-
tion.” in NIPS, vol. 99, 1999, pp. 1057–1063.

[51] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel,
“Benchmarking deep reinforcement learning for continuous control,”
CoRR, vol. abs/1604.06778, 2016. [Online]. Available: http://arxiv.org/
abs/1604.06778

[52] R. Dowling, A. Skabardonis, and V. Alexiadis, “Traffic analysis toolbox
volume iii: guidelines for applying traffic microsimulation modeling
software,” Tech. Rep., 2004.

[53] H. Yeo, A. Skabardonis, J. Halkias, J. Colyar, and V. Alexiadis, “Over-
saturated freeway flow algorithm for use in next generation simulation,”
Transportation Research Record: Journal of the Transportation Research
Board, no. 2088, pp. 68–79, 2008.

[54] M. Batista and E. Twrdy, “Optimal velocity functions for car-following
models,” Journal of Zhejiang University-SCIENCE A, vol. 11, no. 7, pp.
520–529, 2010.

[55] J. Erdmann, “SUMO’s lane-changing model,” in Modeling Mobility with
Open Data. Springer, 2015, pp. 105–123.

[56] Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishi-
nari, S.-i. Tadaki, and S. Yukawa, “Traffic jams without bottlenecks–
experimental evidence for the physical mechanism of the formation of
a jam,” New Journal of Physics, vol. 10, no. 3, p. 033001, 2008.


